Intro to

Recap on summarization

summary (x): quantile information
summarize: creates a summary table of columns of interest

+ count(variable): how many of each unique value do you have
group_by(): changes all subsequent functions

- combine with summarize() to get statistics per group

Cheatsheet

2/33

https://jhudatascience.org/intro_to_r/modules/cheatsheets/Day-4.pdf

Data Cleaning

In general, data cleaning is a process of investigating your data for
inaccuracies, or recoding it in a way that makes it more
manageable.

MOST IMPORTANT RULE - LOOK AT YOUR DATA!

3/33

Dealing with Missing Data

Air quality data

The airquality dataset comes with R about air quality in New York in 1973.

?alrquality # use this to find out more about the data

5/33

We can use count to see missing values

The will be at the bottom typically

Ozone_values <- count(airquality, Ozone)
tail(0Ozone_values)

Ozone
63 115
64 118
65 122
66 135
67 168

68 NA 3

NRRRRRS

6/33

Missing Data Issues

Recall that mathematical operations with NA often result in NAs.

sum(c(1,2,3,NA))

[1] NA
mean(c(1,2,3,NA))
[1] NA
median(c(1,2,3,NA))

[1] NA

7/33

filter() and missing data

Be careful with missing data using subsetting!

filter () removes missing values by default. Because R can't tell for sure if an

NA value meets the condition. To keep them need to add is.na() conditional.

Think about if this is OK or not - it depends on your datal!

airquality %% filter(Solar.R > 330 | is.na(Solar.R))

©CooO~NOOUGITL_WNE

Ozone Solar.R Wind Temp Month Day

NA
28

7
14
NA
NA
/8
35
66

NA
NA
NA
334
NA
332
NA
NA
NA

14,
14,
6.
11.
8.
13.
6.
7.
4.,

OPRPOOOOUTOOW

56
66
74
64
o7
80
86
85
87

00 00 0O O U1 U1 U1 U1 U1

5
6
11
16
27
14
4
5
6

8/33

To remove rows with NA values for a variable use drop_na()

A function from the tidyr package. (Need a data frame to start!)

Disclaimer: Don't do this unless you have thought about if dropping NA values
makes sense based on knowing what these values mean in your data.

airquality %>% drop_na(0Ozone)

Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
S 28 NA 14.9 66 5 6
6 23 299 8.6 65 5 7
7 19 99 13.8 59 5 8
8 8 19 20.1 61 5 9
9 7 NA 6.9 74 5 11
10 16 256 9.7 69 5 12
11 11 290 9.2 66 5 13
12 14 274 10.9 68 5 14
13 18 65 13.2 58 5 15
14 14 334 11.5 64 5 16
15 34 307 12.0 66 5 17
16 6 /8 18.4 57 5 18
17 30 322 11.5 68 5 19
18 11 44 9.7 62 5 20
19 1 8 9.7 59 5 21
20 11 320 16.6 73 5 22
21 4 25 O.7 61 5 23

9/33

To remove rows with NA values for a data frame use drop_na()

This function of the tidyr package drops rows with any missing data in any
column when used on a df.

airquality %>% drop_na()

Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
S 23 299 8.6 65 5 7
6 19 99 13.8 59 5 8
7 8 19 20.1 61 5 9
8 16 256 9.7 69 5 12
9 11 290 9.2 66 5 13
10 14 274 10.9 68 5 14
11 18 65 13.2 58 5 15
12 14 334 11.5 64 5 16
13 34 307 12.0 66 5 17
14 6 /8 18.4 57 5 18
15 30 322 11.5 68 5 19
16 11 44 9.7 62 5 20
17 1 8 9.7 59 5 21
18 11 320 16.6 73 5 22
19 4 25 9.7 61 5 23
20 32 92 12.0 61 5 24
21 23 13 12.0 67 5 28
22 45 252 14.9 81 5 29

7 5 30

23 115 223 5.

N, — N —

79

10/33

Summary
count () can help determine if we have NA values

filter () automatically removes NA values - can't confirm or deny if condition
iIs met (need | is.na() to keep them)

drop_na() can help you remove NA values from a variable or an entire data
frame

NA values can change your calculation results

- think about what NA values represent - don't drop them if you shouldn’t

11/33

Practice

Practice

Use count () and tail() to determine the number of missing values in the
airquality data for the Solar.R variable.

airquality %>% count() %>%

13/33

Practice

Filter the rows of airquality to remove rows with NA values for Solar .R.

filt_airqual <- %>% ()

14/33

Recoding Variables

Example of Recoding

#install.packages('"catdata")

library(catdata)

?catdata: :teratology

data(teratology)
rat <- teratology

Description

In a teratology experiment 58 rats on iron-deficient diets were assigned to four groups. In the first
group only placebo injections were given, in the other groups iron supplements were given. The
animals were made pregnant and sacrificed after three weeks. The response is the number of
living and dead rats of a litter.

Usage

data(teratology)

Format

A data frame with 58 observations on the following 3 variables.

D

number of deaths of rats litter
L

number survived of rats litter
Grp

group(Untreated = 1, Injections days 7 and 10 = 2, Injections days 0 and 7 = 3, Injections
weekly = 4

16/33

Note about select

Once loading this catdata package, you need to specify that you want to use the
select from dplyr. It just happens to have a function that is the same name

and we want the dplyr version.

select <- dplyr::select

17/33

Ohdear...

It's not very easy to tell what is what.

head(rat)

Gr

OURWNR
©CeobhoObRrO
NO®WN©r
RRRRRRDT

18/33

Grp variable

rat %>%
count(Grp)

19/33

Changing the class

We can use as.character or as.numeric to change a variable to each class
respectively.

Let's change the group to be character, since it doesn't actually have numeric
significance.

rat <- rat %% mutate(Grp = as.character(Grp))

20/33

dplyr can help!

In dplyr you can use the recode function to change each Grp value to be
something more useful!

(need mutate for data frames/tibbles!)

21/33

recode() function

Need quotes for values!

rat <-rat %%
mutate(Grp_recoded = recode(Grp,

rat %>% count(Grp_recoded)

Grp_recoded n
1 Inj. Day @ and 7 5
2 Inj. Day 7 and 10 12
3 Inj. Weekly 10
4 Untreated 31

Illll
Il2|l
Il3|l
Il4|l

"Untreated",

"Inj. Day 7 and 10",
"Inj. Day 0 and 7",
"Inj. Weekly"))

22/33

rename columns

Can use the rename() function.

general format! not code!

{data you are creating or changing} <- {data you are using} %>%

rename({New Name} = {0ld name})
head(rat, 2)

D L Grp Grp_recoded
119 1 Untreated
2 4 7 1 Untreated

rat <- rat %% rename(''num_dead_litter" = "D",
"num_living_litter" = "L")
head(rat, 2)

num_dead_litter num_living_litter Grp Grp_recoded
1 1 9 1 Untreated
2 4 7 1 Untreated

23/33

Practice

Practice

First load some data.

#install.packages('catdata")
library(catdata)

data(teratology2)

rat2 <-teratology2 # assign it to a new name
head(rat2)

Rat Grp
Gl
Gl
Gl
Gl
Gl
Gl

OUTAWNR
PO ORK
RRrRRrRRR

?teratology2 #find out more about the data

25/33

Practice

Recode the data to create a new variable from the y variable to be values of
dead (instead of 1) and 1iving (instead of 0). Call the variable status.

First change the y variable to be character.

rat2 <- rat2 %% __ (y = (y))

rat2_recoded <- rat2 %%
(status = (_,

7/

))

26/33

Summary

recode() requires mutate() when working with dataframes/tibbles
recode() can help with simple recoding (an exact swap) for values
recode() has the opposite order as rename - use “old value” = “new value”

rename () helps us change column names - use new name = old name and it
does not require mutate() Workshop Website

27/33

https://hutchdatascience.org/SeattleStatSummer_R/

Extra slides if there is time

case_when() helps make sophisticated new variables

Note that automatically values not reassigned explicitly by case_when () will be
NA unless otherwise specified.

{value_for_not_meeting_condition} could be something new or it can be the
original values of a column

29/33

case_when()

case_when can do very sophisticated comparisons

rat <- rat %%
mutate("survival" =
case_when(num_living_litter > num_dead_litter ~ "well",
num_living_litter == num_dead_litter ~ "even",
num_living_litter < num_dead_litter ~ "poor"))

30/33

Now it is easier to see what is happening

rat%>%

count(Grp_recoded, survival)

Grp_recoded survival

1 Inj. Day 0 and 7
2 Inj. Day 7 and 10
3 Inj. Weekly
4 Untreated
5 Untreated

well
well
well
poor
well

12
10
26

31/33

case when will make NA values

If there is a condition not specified, NA values will be generated.

rat %>%
mutate("survival" =

case_when(num_living_litter > num_dead_litter ~ "well")) %%
count(Grp_recoded, survival)

Grp_recoded survival

1 Inj. Day 0 and 7
2 Inj. Day 7 and 10

3 Inj. Weekly
4 Untreated
5 Untreated

well
well
well
well
<NA>

12
10

26

32/33

Summary

recode() and case_when() require mutate () when working with
dataframes/tibbles
recode() can help with simple recoding (an exact swap)

- case_when() can recode based on conditions (need quotes for conditions
and new values)

- remember case_when() will generate NA values for anything not
specified

Workshop Website

33/33

https://hutchdatascience.org/SeattleStatSummer_R/

